OFFSET
1,1
COMMENTS
Numbers that are norm-abundant (A332570) in Gaussian integers and having no norm-abundant proper divisor.
REFERENCES
Miriam Hausman, On Norm Abundant Gaussian Integers, The Journal of the Indian Mathematical Society, Vol. 49 (1987), pp. 119-123.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 120.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Robert Spira, The Complex Sum of Divisors, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124.
EXAMPLE
5 is primitive norm-abundant since it is norm-abundant, sigma(5) = 4 + 8*i and N(4 + 8*i) = 4^2 + 8^2 = 80 > 2 * 5^2 = 50, and none of the proper divisors of 5, {1, 1 + 2*i, 2 + i}, are norm-abundant: N(sigma(1)) = 1 < 2 * 1^2, N(sigma(1 + 2*i)) = N(2 + 2*i) = 8 < 2 * N(1 + 2*i) = 10, and N(sigma(2 + i)) = N(3 + i) = 10 = 2 * N(2 + i). (sigma(k) = A103228(k) + i*A103229(k) is the sum of divisors of k in Gaussian integers, i is the imaginary unit, and N(z) = Re(z)^2 + Im(z)^2 is the norm of the complex number z.)
MATHEMATICA
normAbQ[z_] := normAbQ[z] = Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; primNormAbQ[z_] := normAbQ[z] && !AnyTrue[Most[Divisors[z, GaussianIntegers -> True]], normAbQ]; Select[Range[1000], primNormAbQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 16 2020
STATUS
approved