The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332288 Number of unimodal permutations of the multiset of prime indices of n. 17
 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2). LINKS Wikipedia, Permutation pattern MathWorld, Unimodal Sequence EXAMPLE The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180:   (1)  (12)  (112)  (1112)  (11112)  (1123)  (11123)  (11223)        (21)  (121)  (1121)  (11121)  (1132)  (11132)  (11232)              (211)  (1211)  (11211)  (1231)  (11231)  (11322)                     (2111)  (12111)  (1321)  (11321)  (12231)                             (21111)  (2311)  (12311)  (12321)                                      (3211)  (13211)  (13221)                                              (23111)  (22311)                                              (32111)  (23211)                                                       (32211) MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]]; Table[Length[Select[Permutations[primeMS[n]], unimodQ]], {n, 30}] CROSSREFS Dominated by A008480. A more interesting version is A332294. The complement is counted by A332671. Unimodal compositions are A001523. Unimodal normal sequences appear to be A007052. Unimodal permutations are A011782. Non-unimodal permutations are A059204. Numbers with non-unimodal unsorted prime signature are A332282. Partitions with unimodal 0-appended first differences are A332283. Cf. A056239, A112798, A115981, A124010, A227038, A304660, A328509, A332280, A332284, A332294, A332578, A332672. Sequence in context: A140747 A330757 A322373 * A335450 A324191 A238946 Adjacent sequences:  A332285 A332286 A332287 * A332289 A332290 A332291 KEYWORD nonn AUTHOR Gus Wiseman, Feb 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 14:19 EDT 2021. Contains 346335 sequences. (Running on oeis4.)