OFFSET
1,2
COMMENTS
An integer partition is widely totally strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which are themselves a widely totally strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is closed under A304660, so there are infinitely many terms that are not powers of 2 or primorial numbers.
EXAMPLE
The sequence of all widely totally strongly normal integer partitions together with their Heinz numbers begins:
1: ()
2: (1)
4: (1,1)
6: (2,1)
8: (1,1,1)
16: (1,1,1,1)
18: (2,2,1)
30: (3,2,1)
32: (1,1,1,1,1)
64: (1,1,1,1,1,1)
128: (1,1,1,1,1,1,1)
210: (4,3,2,1)
256: (1,1,1,1,1,1,1,1)
450: (3,3,2,2,1)
512: (1,1,1,1,1,1,1,1,1)
1024: (1,1,1,1,1,1,1,1,1,1)
2048: (1,1,1,1,1,1,1,1,1,1,1)
2250: (3,3,3,2,2,1)
2310: (5,4,3,2,1)
4096: (1,1,1,1,1,1,1,1,1,1,1,1)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
totnQ[ptn_]:=Or[ptn=={}, Union[ptn]=={1}, And[Union[ptn]==Range[Max[ptn]], GreaterEqual@@Length/@Split[ptn], totnQ[Length/@Split[ptn]]]];
Select[Range[10000], totnQ[Reverse[primeMS[#]]]&]
CROSSREFS
Closed under A304660.
The non-strong version is A332276.
The co-strong version is A332293.
The case of reversed partitions is (also) A332293.
Heinz numbers of normal partitions with decreasing run-lengths are A025487.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Feb 14 2020
STATUS
approved