login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331185
a(n) = n - prime(A067004(n)), where A067004 is the ordinal transform of number of divisors of n (A000005).
3
-1, 0, 0, 2, 0, 4, 0, 5, 6, 5, 0, 10, 0, 7, 4, 14, 0, 15, 0, 15, 8, 5, 0, 22, 20, 7, 4, 21, 0, 27, 0, 21, 4, 3, -2, 34, 0, -3, -4, 35, 0, 35, 0, 31, 28, -1, 0, 46, 42, 31, -2, 29, 0, 43, -4, 43, -4, -9, 0, 58, 0, -9, 34, 62, -8, 49, 0, 37, -10, 51, 0, 69, 0, -9, 38, 35, -12, 55, 0, 77, 78, -15, 0, 79, -16, -17, -20, 59, 0, 83
OFFSET
1,4
FORMULA
a(n) = n - A000040(A067004(n)).
MATHEMATICA
b[_] = 0;
c[n_] := c[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
a[n_] := n - Prime[c[n]];
Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
v067004 = ordinal_transform(vector(up_to, n, numdiv(n)));
A067004(n) = v067004[n];
A331185(n) = (n - prime(A067004(n)));
CROSSREFS
Cf. A000005, A000040 (positions of zeros), A067004, A331186, A331187.
Sequence in context: A357487 A225437 A065806 * A228087 A320582 A119690
KEYWORD
sign,look
AUTHOR
Antti Karttunen, Jan 12 2020
STATUS
approved