The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225437 Numbers of triples {x, y, z} such that z >= y > 0 and triangular(x) + triangular(y) * triangular(z) = 2^n. 2
 1, 1, 2, 0, 4, 0, 5, 1, 7, 0, 4, 0, 18, 0, 2, 0, 17, 0, 16, 0, 15, 0, 9, 0, 39, 0, 9, 0, 61, 0, 10, 3, 27, 0, 18, 0, 56, 0, 8, 0, 80, 0, 48, 1, 41, 0, 12, 0, 118, 1, 10, 0, 90, 0, 30, 2, 24, 0, 24 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS EXAMPLE {0, 1, 1} is the only triple producing 2^0, so a(0) = 1. {1, 1, 3} and {3, 1, 1} are the triples producing 2^2, so a(2) = 2. PROG (C) #include #include typedef unsigned long long U64; U64 isTriangular(U64 a) {  // ! Must be a <= (1<<63)     U64 s = sqrt(a*2);     if (a>=(1ULL<<63)) {       if (a==(1ULL<<63)) return 0;       printf("Error: a = %llu\n", a), exit(1);     }     return (s*(s+1)/2 == a); } int main() {   U64 c, n, x, tx, y, ty, z, prod;   for (n = 1; n>0 && n <= (1ULL<<63); n+=n) {     for (c = 0, x = tx = 0; tx <= n; ++x, tx+=x)       for (z=prod=n-tx, y=ty=1; ty<=z; ++y, ty+=y, z=prod/ty)         if ((z * ty == prod) && isTriangular(z))  c++;     printf("%llu, ", c);   }   return 0; } CROSSREFS Cf. A000217, A224928, A225536. Sequence in context: A286663 A114402 A035647 * A065806 A331185 A228087 Adjacent sequences:  A225434 A225435 A225436 * A225438 A225439 A225440 KEYWORD nonn,hard,more AUTHOR Alex Ratushnyak, May 08 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 11:32 EDT 2020. Contains 334825 sequences. (Running on oeis4.)