OFFSET
1,2
COMMENTS
In groups of two, add and half-multiply the integers: 0+1, (2*3)/2, 4+5, (6*7)/2, ....
From Bernard Schott, Jan 06 2020: (Start)
The bisection of this sequence gives:
For n odd = 2*k+1, k >= 0: a(2*k+1) = 8*k+1 = A017077(k),
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = -1 + 2*(-1)^n - (1/2)*(-1+7*(-1)^n)*n + (1+(-1)^n)*n^2.
(End)
E.g.f.: (1 + 4*x + 2*x^2)*cosh(x) - (3 + x)*sinh(x) - 1. - Stefano Spezia, Jan 05 2020 after Colin Barker
MATHEMATICA
a[n_]:=If[OddQ[n], 4n-3, (n-1)(2n-1)]; Array[a, 53] (* Stefano Spezia, Jan 05 2020 *)
PROG
(PARI) Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
George E. Antoniou, Jan 05 2020
STATUS
approved