login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330987
Alternatively add and half-multiply pairs of the nonnegative integers.
2
1, 3, 9, 21, 17, 55, 25, 105, 33, 171, 41, 253, 49, 351, 57, 465, 65, 595, 73, 741, 81, 903, 89, 1081, 97, 1275, 105, 1485, 113, 1711, 121, 1953, 129, 2211, 137, 2485, 145, 2775, 153, 3081, 161, 3403, 169, 3741, 177, 4095, 185, 4465, 193, 4851, 201, 5253, 209
OFFSET
1,2
COMMENTS
In groups of two, add and half-multiply the integers: 0+1, (2*3)/2, 4+5, (6*7)/2, ....
From Bernard Schott, Jan 06 2020: (Start)
The bisection of this sequence gives:
For n odd = 2*k+1, k >= 0: a(2*k+1) = 8*k+1 = A017077(k),
For n even = 2*k, k >= 1: a(2*k) = T(4*k-2) = A000217(4*k-2) = (2*k-1)*(4*k-1) = A033567(k) where T(j) is the j-th triangular number. (End)
FORMULA
From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = -1 + 2*(-1)^n - (1/2)*(-1+7*(-1)^n)*n + (1+(-1)^n)*n^2.
(End)
E.g.f.: (1 + 4*x + 2*x^2)*cosh(x) - (3 + x)*sinh(x) - 1. - Stefano Spezia, Jan 05 2020 after Colin Barker
MATHEMATICA
a[n_]:=If[OddQ[n], 4n-3, (n-1)(2n-1)]; Array[a, 53] (* Stefano Spezia, Jan 05 2020 *)
PROG
(PARI) Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020
CROSSREFS
Cf. A330983.
Interspersion of A017077 and A033567 (excluding first term). - Michel Marcus, Jan 06 2020
Sequence in context: A377947 A006077 A291898 * A365919 A109612 A032668
KEYWORD
nonn,easy
AUTHOR
George E. Antoniou, Jan 05 2020
STATUS
approved