login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330983
Alternatively add and multiply pairs of the nonnegative integers.
2
1, 6, 9, 42, 17, 110, 25, 210, 33, 342, 41, 506, 49, 702, 57, 930, 65, 1190, 73, 1482, 81, 1806, 89, 2162, 97, 2550, 105, 2970, 113, 3422, 121, 3906, 129, 4422, 137, 4970, 145, 5550, 153, 6162, 161, 6806, 169, 7482, 177, 8190, 185, 8930, 193, 9702, 201, 10506, 209
OFFSET
1,2
COMMENTS
In groups of two, add and multiply the integers: 0+1, 2*3, 4+5, 6*7, ....
FORMULA
From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = (1/2)*(-1 + 5*(-1)^n - 2*(1 + 5*(-1)^n)*n + 4*(1+(-1)^n)*n^2).
(End)
E.g.f.: (2 + 4*x*(1 + x))*cosh(x) - (3 + 2*x)*sinh(x) - 2. - Stefano Spezia, Jan 05 2020 after Colin Barker
MATHEMATICA
a[n_]:=If[OddQ[n], 4n-3, 2(n-1)(2n-1)]; Array[a, 53] (* Stefano Spezia, Jan 05 2020 *)
PROG
(PARI) Vec(x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 07 2020
CROSSREFS
Cf. A330987.
Interspersion of A017077 and A256833. - Michel Marcus, Jan 06 2020
Sequence in context: A004989 A147355 A154139 * A299914 A187998 A177181
KEYWORD
nonn,easy
AUTHOR
George E. Antoniou, Jan 05 2020
STATUS
approved