login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternatively add and multiply pairs of the nonnegative integers.
2

%I #26 Feb 28 2020 13:50:07

%S 1,6,9,42,17,110,25,210,33,342,41,506,49,702,57,930,65,1190,73,1482,

%T 81,1806,89,2162,97,2550,105,2970,113,3422,121,3906,129,4422,137,4970,

%U 145,5550,153,6162,161,6806,169,7482,177,8190,185,8930,193,9702,201,10506,209

%N Alternatively add and multiply pairs of the nonnegative integers.

%C In groups of two, add and multiply the integers: 0+1, 2*3, 4+5, 6*7, ....

%H Colin Barker, <a href="/A330983/b330983.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).

%F From _Colin Barker_, Jan 05 2020: (Start)

%F G.f.: x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3).

%F a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.

%F a(n) = (1/2)*(-1 + 5*(-1)^n - 2*(1 + 5*(-1)^n)*n + 4*(1+(-1)^n)*n^2).

%F (End)

%F E.g.f.: (2 + 4*x*(1 + x))*cosh(x) - (3 + 2*x)*sinh(x) - 2. - _Stefano Spezia_, Jan 05 2020 after _Colin Barker_

%t a[n_]:=If[OddQ[n],4n-3,2(n-1)(2n-1)]; Array[a,53] (* _Stefano Spezia_, Jan 05 2020 *)

%o (PARI) Vec(x*(1 + 6*x + 6*x^2 + 24*x^3 - 7*x^4 + 2*x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ _Colin Barker_, Jan 07 2020

%Y Cf. A330987.

%Y Interspersion of A017077 and A256833. - _Michel Marcus_, Jan 06 2020

%K nonn,easy

%O 1,2

%A _George E. Antoniou_, Jan 05 2020