login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330890
Decimal expansion of Product_{prime p == 1 (mod 4)} (1 + 1/p^2)/(1 - 1/p^2).
1
1, 1, 1, 3, 6, 8, 0, 6, 1, 8, 1, 3, 2, 3, 1, 6, 4, 8, 8, 8, 6, 1, 8, 9, 1, 9, 4, 1, 1, 9, 8, 3, 1, 9, 9, 1, 3, 6, 5, 6, 5, 8, 2, 7, 5, 4, 7, 8, 7, 7, 5, 9, 2, 3, 2, 4, 4, 5, 6, 1, 1, 5, 1, 6, 3, 4, 6, 7, 5, 6, 7, 2, 7, 7, 2, 5, 4, 6, 6, 5, 1, 0, 7, 5, 0, 3, 6, 6, 2, 7, 6, 5, 2, 7, 7, 4, 1, 8, 1, 5, 8, 8, 1, 7, 2
OFFSET
1,4
FORMULA
Equals 12*G/Pi^2, where G is Catalan's constant (A006752).
Equals A243380 / A088539.
Equals Sum_{q in A004613} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals (1 + w)/(1 - w), where w = tanh(Sum_{prime p == 1 (mod 4)} artanh(1/p^2)) = 0.0537832523783875... Physical interpretation: the constant w is the relativistic sum of the velocities c/p^2 over all Pythagorean primes p, in units where the speed of light c = 1. - Thomas Ordowski, Nov 14 2024
EXAMPLE
1.1136806181323164888618919411983199136565827547877592324456...
MATHEMATICA
RealDigits[12*Catalan/Pi^2, 10, 120][[1]]
PROG
(PARI) 12*Catalan/Pi^2 \\ Michel Marcus, May 01 2020
CROSSREFS
Cf. A002144, A088539, A242822, A243380, A242822 (see the second formula).
Sequence in context: A067697 A137128 A256372 * A337404 A133442 A133193
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 30 2020
EXTENSIONS
Name edited by Thomas Ordowski, Nov 15 2024
STATUS
approved