Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Dec 01 2024 11:36:41
%S 1,1,1,3,6,8,0,6,1,8,1,3,2,3,1,6,4,8,8,8,6,1,8,9,1,9,4,1,1,9,8,3,1,9,
%T 9,1,3,6,5,6,5,8,2,7,5,4,7,8,7,7,5,9,2,3,2,4,4,5,6,1,1,5,1,6,3,4,6,7,
%U 5,6,7,2,7,7,2,5,4,6,6,5,1,0,7,5,0,3,6,6,2,7,6,5,2,7,7,4,1,8,1,5,8,8,1,7,2
%N Decimal expansion of Product_{prime p == 1 (mod 4)} (1 + 1/p^2)/(1 - 1/p^2).
%F Equals 12*G/Pi^2, where G is Catalan's constant (A006752).
%F Equals A243380 / A088539.
%F Equals Sum_{q in A004613} 2^A001221(q)/q^2. - _R. J. Mathar_, Jan 27 2021
%F Equals (1 + w)/(1 - w), where w = tanh(Sum_{prime p == 1 (mod 4)} artanh(1/p^2)) = 0.0537832523783875... Physical interpretation: the constant w is the relativistic sum of the velocities c/p^2 over all Pythagorean primes p, in units where the speed of light c = 1. - _Thomas Ordowski_, Nov 14 2024
%e 1.1136806181323164888618919411983199136565827547877592324456...
%t RealDigits[12*Catalan/Pi^2, 10, 120][[1]]
%o (PARI) 12*Catalan/Pi^2 \\ _Michel Marcus_, May 01 2020
%Y Cf. A002144, A088539, A242822, A243380, A242822 (see the second formula).
%Y Cf. A334424/A334425, A334445/A334446, A334449/A334450.
%K nonn,cons
%O 1,4
%A _Vaclav Kotesovec_, Apr 30 2020
%E Name edited by _Thomas Ordowski_, Nov 15 2024