login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330756
Number of values of k, 1 <= k <= n, with A063994(k) = A063994(n), where A063994(n) = Product_{primes p dividing n} gcd(p-1, n-1).
2
1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 7, 1, 8, 2, 9, 1, 10, 1, 11, 3, 12, 1, 13, 4, 14, 3, 1, 1, 15, 1, 16, 5, 17, 6, 18, 1, 19, 7, 20, 1, 21, 1, 22, 1, 23, 1, 24, 2, 25, 8, 2, 1, 26, 9, 27, 10, 28, 1, 29, 1, 30, 11, 31, 2, 1, 1, 32, 12, 3, 1, 33, 1, 34, 13, 4, 14, 35, 1, 36, 4, 37, 1, 38, 3, 39, 15, 40, 1, 41, 2, 42, 16
OFFSET
1,2
COMMENTS
Ordinal transform of A063994.
LINKS
MATHEMATICA
A063994[n_] := If[n==1, 1, Times @@ GCD[n-1, First /@ FactorInteger[n]-1]];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A063994[n]}, b[t] = b[t]+1]];
Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
PROG
(PARI)
up_to = 65537;
A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
v330756 = ordinal_transform(vector(up_to, n, A063994(n)));
A330756(n) = v330756[n];
CROSSREFS
Cf. also A081373, A303756, A330747.
Sequence in context: A198336 A365431 A353960 * A330747 A337785 A290980
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2019
STATUS
approved