login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of values of k, 1 <= k <= n, with A063994(k) = A063994(n), where A063994(n) = Product_{primes p dividing n} gcd(p-1, n-1).
2

%I #14 Jan 12 2022 03:21:19

%S 1,2,1,3,1,4,1,5,2,6,1,7,1,8,2,9,1,10,1,11,3,12,1,13,4,14,3,1,1,15,1,

%T 16,5,17,6,18,1,19,7,20,1,21,1,22,1,23,1,24,2,25,8,2,1,26,9,27,10,28,

%U 1,29,1,30,11,31,2,1,1,32,12,3,1,33,1,34,13,4,14,35,1,36,4,37,1,38,3,39,15,40,1,41,2,42,16

%N Number of values of k, 1 <= k <= n, with A063994(k) = A063994(n), where A063994(n) = Product_{primes p dividing n} gcd(p-1, n-1).

%C Ordinal transform of A063994.

%H Antti Karttunen, <a href="/A330756/b330756.txt">Table of n, a(n) for n = 1..65537</a>

%t A063994[n_] := If[n==1, 1, Times @@ GCD[n-1, First /@ FactorInteger[n]-1]];

%t Module[{b}, b[_] = 0;

%t a[n_] := With[{t = A063994[n]}, b[t] = b[t]+1]];

%t Array[a, 105] (* _Jean-François Alcover_, Jan 12 2022 *)

%o (PARI)

%o up_to = 65537;

%o A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994

%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };

%o v330756 = ordinal_transform(vector(up_to, n, A063994(n)));

%o A330756(n) = v330756[n];

%Y Cf. A063994, A209211.

%Y Cf. also A081373, A303756, A330747.

%K nonn

%O 1,2

%A _Antti Karttunen_, Dec 30 2019