login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330690
Number of ways to factor A108951(n) into "Fermi-Dirac primes" (A050376), where A108951 is fully multiplicative with a(prime(k)) = k-th primorial.
3
1, 1, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 8, 2, 4, 2, 1, 4, 1, 4, 4, 2, 8, 8, 1, 2, 4, 4, 1, 4, 1, 2, 4, 2, 1, 4, 16, 8, 4, 2, 1, 8, 8, 4, 4, 2, 1, 8, 1, 2, 4, 6, 8, 4, 1, 2, 4, 8, 1, 8, 1, 2, 8, 2, 16, 4, 1, 4, 16, 2, 1, 8, 8, 2, 4, 4, 1, 8, 16, 2, 4, 2, 8, 6, 1, 16, 4, 16, 1, 4, 1, 4, 8
OFFSET
1,4
COMMENTS
a(64) = 6 is the first term which is not a power of 2.
FORMULA
a(n) = A050377(A108951(n)).
a(n) = A050378(A329901(n)).
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819
A050377(n) = factorback(apply(e -> A018819(e), factor(n)[, 2]));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 28 2019
STATUS
approved