login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330447
a(n) is the smallest index k such that {0,1,2,...,n} is a subset of { A316774(j) : 0 <= j <= k }.
3
0, 1, 2, 5, 5, 8, 11, 22, 22, 32, 32, 42, 48, 48, 68, 71, 77, 89, 108, 115, 115, 140, 140, 149, 216, 268, 268, 268, 310, 310, 310, 340, 362, 362, 362, 362, 362, 476, 476, 476, 476, 560, 560, 560, 560, 560, 576, 576, 579, 692, 692, 707, 754, 794, 794, 797, 928
OFFSET
0,3
LINKS
FORMULA
a(n) = max_{0 <= j <= n} A316905(j).
a(n) >= A316905(n).
a(n) <= a(n+1).
MAPLE
b:= proc() 0 end:
g:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
b(t):= b(t)+1; t
end:
f:= proc() local t, a; t, a:= -1, proc() -1 end;
proc(n) local h;
while a(n) = -1 do
t:= t+1; h:= g(t);
if a(h) = -1 then a(h):= t fi
od; a(n)
end
end():
a:= proc(n) option remember; `if`(n<0, 0,
max(a(n-1), f(n)))
end:
seq(a(n), n=0..100);
MATHEMATICA
b[_] = 0;
g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]]; b[t] = b[t] + 1; t];
f[n_] := Module[{t, a}, t = -1; a[_] = -1; Module[{h}, While[a[n] == -1, t = t + 1; h = g[t]; If[a[h] == -1, a[h] = t]]; a[n]]];
a[n_] := a[n] = If[n < 0, 0, Max[a[n - 1], f[n]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 15 2019
STATUS
approved