login
A330446
Composite numbers k such that 2^(k-1) == - lambda(k) (mod k), where lambda is the Carmichael lambda function (A002322).
0
140, 1054, 1068, 4844, 11209, 19856, 24949, 28390, 78184, 423796, 769516, 4283544, 5935168, 13116053, 122189752, 441252296, 528500308, 636697392, 669629030, 669778082, 1228748591
OFFSET
1,1
COMMENTS
Composite numbers k such that A062173(k) = A277127(k).
The odd terms are 11209, 24949, 13116053, ...
Note that if p is an odd prime, then 2^(p-1) == - lambda(p) (mod p), because lambda(p) = p-1.
EXAMPLE
140 is a term since it is composite and 2^(140-1) == 140 - lambda(140) == 128 (mod 140).
MATHEMATICA
Select[Range[10^6], CompositeQ[#] && PowerMod[2, # - 1, #] == # - CarmichaelLambda[#] &]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar and Thomas Ordowski, Dec 15 2019
STATUS
approved