login
A329920
Smallest k such that 6*k*A121940(n)-1 and 6*k*A121940(n)+1 are twin primes.
0
1, 2, 2, 15, 36, 10, 13, 26, 30, 228, 24, 138, 520, 59, 110, 456, 700, 670, 146, 300, 390, 53, 2335, 340, 159, 340, 65, 475, 785, 1145, 759, 3557, 490, 169, 990, 1527, 704, 3379, 1426, 1927, 2397, 600, 1603, 4809, 9815, 58, 35, 364, 361, 123, 2197, 4054, 1867, 1827, 5048
OFFSET
1,2
EXAMPLE
A121940(1)=7, 6*1*7-1=41, 41 and 43 are twin primes so a(1)=1.
A121940(2)=91, 6*2*91-1=1091, 1091 and 1093 are twin primes so a(2)=2.
PROG
(PFGW Script)
SCRIPT
DIM i, 0
DIM j
DIM k, 0
DIM n, 1
OPENFILEOUT myf, a(n).txt
OPENFILEIN maf, a002476.txt
LABEL a
SET i, i+1
IF i>100 THEN END
GETNEXT j, maf
SET n, n*j
SET k, 0
LABEL b
SET k, k+1
PRP k*6*n+1, k
IF ISPRP THEN GOTO c
GOTO b
LABEL c
PRP k*6*n-1, k
IF ISPRP THEN GOTO d
GOTO b
LABEL d
WRITE myf, k
GOTO a
(PARI) lista(nn) = {my(pp = 1); forprime (p = 1, nn, if (Mod(p, 6) == +1, pp *= p; my(k=1); while (!isprime(6*k*pp-1) || !isprime(6*k*pp+1), k++); print1(k, ", "); ); ); } \\ Michel Marcus, Nov 25 2019
KEYWORD
nonn
AUTHOR
Pierre CAMI, Nov 24 2019
STATUS
approved