OFFSET
1,2
COMMENTS
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.
LINKS
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
EXAMPLE
The sequence of terms together with their binary expansions begins:
0:
8: 1000
12: 1100
14: 1110
17: 10001
24: 11000
27: 11011
28: 11100
35: 100011
36: 100100
39: 100111
47: 101111
49: 110001
51: 110011
54: 110110
57: 111001
61: 111101
70: 1000110
73: 1001001
78: 1001110
80: 1010000
For example, 36 has runs-resistance 3 because we have (100100) -> (1212) -> (1111) -> (4), while the cuts-resistance is also 3 because we have (100100) -> (00) -> (0) -> ().
Similarly, 57 has runs-resistance 3 because we have (111001) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have (111001) -> (110) -> (1) -> ().
MATHEMATICA
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&, q, Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&, q, Length[#]>0&]]-1;
Select[Range[0, 100], #==0||runsres[IntegerDigits[#, 2]]==degdep[IntegerDigits[#, 2]]&]
CROSSREFS
Positions of 0's in A329867.
The version for runs-resistance equal to cuts-resistance minus 1 is A329866.
Compositions with runs-resistance equal to cuts-resistance are A329864.
Runs-resistance of binary expansion is A318928.
Cuts-resistance of binary expansion is A319416.
Compositions counted by runs-resistance are A329744.
Compositions counted by cuts-resistance are A329861.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 23 2019
STATUS
approved