login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329718
The number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.
4
1, 2, 4, 4, 8, 6, 14, 8, 16, 10, 24, 10, 46, 24, 46, 16, 32, 18, 44, 14, 84, 34, 68, 18, 146, 68, 138, 44, 230, 84, 146, 32, 64, 34, 84, 22, 160, 54, 112, 22, 276, 106, 224, 54, 376, 106, 192, 34, 454, 192, 406, 112, 690, 224, 406, 84, 1066, 376, 690, 160
OFFSET
0,2
COMMENTS
A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right.
LINKS
Mikhail Kurkov, Comments on A329718 [verification needed]
FORMULA
a(n) = f(n) + f(A059894(n)) = f(n) + f(2*A053645(n)) for n > 0 with a(0) = 1 where f(n) = A329369(n).
Sum_{k=0..2^n-1} a(k) = 2*(n+1)! - 1 for n >= 0.
a((4^n-1)/3) = 2*A110501(n+1) for n > 0.
a(2^1*(2^n-1)) = A027649(n),
a(2^2*(2^n-1)) = A027650(n),
a(2^3*(2^n-1)) = A027651(n),
a(2^4*(2^n-1)) = A283811(n),
and more generally, a(2^m*(2^n-1)) = T(n,m+1) for n >= 0, m >= 0 where T(n,m) = Sum_{k=0..n} k!*(k+1)^m*Stirling2(n,k)*(-1)^(n-k).
EXAMPLE
a(1) = 2 because the binary expansion of 2 is 10 and there are 2 open biased rook's tours, namely 12 and 21.
a(2) = 4 because the binary expansion of 4 is 100 and there are 4 open biased rook's tours, namely 132, 213, 231 and 321.
a(3) = 4 because the binary expansion of 6 is 110 and there are 4 open biased rook's tours, namely 123, 132, 231 and 312.
KEYWORD
nonn
AUTHOR
Mikhail Kurkov, Nov 19 2019 [verification needed]
STATUS
approved