login
A329598
Partial sums of the nontriangular numbers (A014132).
1
2, 6, 11, 18, 26, 35, 46, 58, 71, 85, 101, 118, 136, 155, 175, 197, 220, 244, 269, 295, 322, 351, 381, 412, 444, 477, 511, 546, 583, 621, 660, 700, 741, 783, 826, 870, 916, 963, 1011, 1060, 1110, 1161, 1213, 1266, 1320, 1376, 1433, 1491, 1550, 1610, 1671, 1733
OFFSET
1,1
COMMENTS
Terms which are triangular: 6, 136, 351, 741, 2415, 3916, 5995, 12561, 17391, 23436, ..., .
FORMULA
a(n) = Sum_{i=1..n} A014132(i).
a(n) = A000217(n) + A060432(n). [corrected by Gerald Hillier, Jul 31 2022]
EXAMPLE
The nontriangular numbers begin 2, 4, 5, 7, ..., so their partial sums begin 2, 6, 11, 18, etc.
MATHEMATICA
triQ[n_] := IntegerQ @ Sqrt[8n + 1]; Accumulate@ Select[ Range@ 70, !triQ@# &]
PROG
(Python)
from math import isqrt
def A329598(n): return (k:=(r:=isqrt(m:=n+1<<1))+int((m<<2)>(r<<2)*(r+1)+1)-1)*(k*(-k - 3) + 6*n - 2)//6 + (n*(n+3)>>1) # Chai Wah Wu, Jun 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved