login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329598
Partial sums of the nontriangular numbers (A014132).
1
2, 6, 11, 18, 26, 35, 46, 58, 71, 85, 101, 118, 136, 155, 175, 197, 220, 244, 269, 295, 322, 351, 381, 412, 444, 477, 511, 546, 583, 621, 660, 700, 741, 783, 826, 870, 916, 963, 1011, 1060, 1110, 1161, 1213, 1266, 1320, 1376, 1433, 1491, 1550, 1610, 1671, 1733
OFFSET
1,1
COMMENTS
Terms which are triangular: 6, 136, 351, 741, 2415, 3916, 5995, 12561, 17391, 23436, ..., .
FORMULA
a(n) = Sum_{i=1..n} A014132(i).
a(n) = A000217(n) + A060432(n). [corrected by Gerald Hillier, Jul 31 2022]
EXAMPLE
The nontriangular numbers begin 2, 4, 5, 7, ..., so their partial sums begin 2, 6, 11, 18, etc.
MATHEMATICA
triQ[n_] := IntegerQ @ Sqrt[8n + 1]; Accumulate@ Select[ Range@ 70, !triQ@# &]
PROG
(Python)
from math import isqrt
def A329598(n): return (k:=(r:=isqrt(m:=n+1<<1))+int((m<<2)>(r<<2)*(r+1)+1)-1)*(k*(-k - 3) + 6*n - 2)//6 + (n*(n+3)>>1) # Chai Wah Wu, Jun 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved