login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329583
Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].
1
0, 6, 3, 12, 6, 30, 9, 54, 18, 84, 27, 126, 36, 174, 51, 228, 66, 294, 81, 366, 102, 444, 123, 534, 144, 630, 171, 732, 198, 846, 225, 966, 258, 1092, 291, 1230, 324, 1374, 363, 1524, 402, 1686, 441, 1854, 486, 2028, 531, 2214, 576, 2406, 627
OFFSET
0,2
COMMENTS
First bisection is 3*A008810.
FORMULA
a(n) = A261327(n) + A131561(n+2) = (n^2 + 4)*(5 - 3*(-1)^n)/8 + (-1)^((n+1) mod 3).
From Colin Barker, Nov 24 2019: (Start)
G.f.: 3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)).
a(n) = -a(n-1) + 2*a(n-2) + 3*a(n-3) - 3*a(n-5) - 2*a(n-6) + a(n-7) + a(n-8) for n>8. (End)
MATHEMATICA
MapIndexed[#1 - 2 Boole[Mod[First@ #2, 3] == 1] + 1 &, CoefficientList[Series[(1 + 5 x - x^2 - 2 x^3 + 2 x^4 + 5 x^5)/(1 - x^2)^3, {x, 0, 44}], x]] (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) concat(0, Vec(3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Nov 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 17 2019
EXTENSIONS
Incorrect 129 replaced with 123 by Colin Barker, Nov 24 2019
STATUS
approved