login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].
1

%I #36 Dec 29 2019 08:40:34

%S 0,6,3,12,6,30,9,54,18,84,27,126,36,174,51,228,66,294,81,366,102,444,

%T 123,534,144,630,171,732,198,846,225,966,258,1092,291,1230,324,1374,

%U 363,1524,402,1686,441,1854,486,2028,531,2214,576,2406,627

%N Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].

%C First bisection is 3*A008810.

%H Colin Barker, <a href="/A329583/b329583.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2,3,0,-3,-2,1,1).

%F a(n) = A261327(n) + A131561(n+2) = (n^2 + 4)*(5 - 3*(-1)^n)/8 + (-1)^((n+1) mod 3).

%F From _Colin Barker_, Nov 24 2019: (Start)

%F G.f.: 3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)).

%F a(n) = -a(n-1) + 2*a(n-2) + 3*a(n-3) - 3*a(n-5) - 2*a(n-6) + a(n-7) + a(n-8) for n>8. (End)

%t MapIndexed[#1 - 2 Boole[Mod[First@ #2, 3] == 1] + 1 &, CoefficientList[Series[(1 + 5 x - x^2 - 2 x^3 + 2 x^4 + 5 x^5)/(1 - x^2)^3, {x, 0, 44}], x]] (* _Michael De Vlieger_, Nov 18 2019 *)

%o (PARI) concat(0, Vec(3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)) + O(x^40))) \\ _Colin Barker_, Nov 24 2019

%Y Cf. A008810, A042965, A047395, A130823, A131561, A261327.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, Nov 17 2019

%E Incorrect 129 replaced with 123 by _Colin Barker_, Nov 24 2019