login
A329461
Poulet numbers (Fermat pseudoprimes to base 2) k, whose sum of proper divisors sigma(k)-k is also a Poulet number.
1
513629, 3898129, 42656440661, 44368051087, 281257598737, 1746990146513, 5179966705541, 6275022424667, 9980519428181, 28343625432959, 37300616980817, 38107619098709, 55964206116901, 73114593538031, 123729699419917, 161656112395553, 297792380089151, 404770747208591
OFFSET
1,1
COMMENTS
The corresponding sums of proper divisors are 2047, 4371, 476971, 526593, 1325843, 5919187, 5256091, 6631549, 7295851, 18007345, 31166803, 17641207, 10274913907, 73562833, 27808463, 68512867, 48269761, 75501793, ...
There are 72 terms below 2^64, 71 of them have 2 prime factors, and only one has 3 prime factors: 55964206116901 = 6361 * 47701 * 184441.
LINKS
EXAMPLE
513629 is a Poulet number, and sigma(513629)-513629 = 2047 is also a Poulet number.
MATHEMATICA
pouletQ[n_] := CompositeQ[n ]&& PowerMod[2, n - 1, n] == 1; s[n_] := DivisorSigma[ 1, n] - n; seq={}; Do[If[pouletQ[n] && pouletQ[s[n]], AppendTo[seq, n]], {n, 1, 10^7}]; seq
CROSSREFS
Sequence in context: A233858 A306952 A336060 * A257424 A257431 A254240
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 13 2019
STATUS
approved