login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329413
Lexicographically earliest sequence of distinct positive numbers such that among the pairwise sums of any five consecutive terms there are exactly two prime sums.
3
1, 2, 3, 7, 13, 5, 8, 9, 17, 16, 4, 6, 11, 12, 10, 14, 15, 21, 18, 19, 20, 30, 22, 24, 29, 26, 23, 25, 36, 32, 33, 27, 28, 37, 31, 39, 35, 34, 38, 42, 44, 41, 40, 43, 45, 46, 47, 50, 52, 49, 65, 53, 51, 54, 55, 57, 48, 60, 56, 59, 61, 71, 70, 67, 58, 64, 62, 63, 68, 66, 73, 72, 69, 76, 75, 74, 78, 80
OFFSET
1,2
COMMENTS
Conjectured to be a permutation of the positive integers: a(10^6) = 10^6 + 9 and all numbers below 10^6 - 7 are used at that point. - M. F. Hasler, Nov 15 2019
LINKS
EXAMPLE
a(1) = 1 is the smallest possible choice for the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (on the required two) with the 5-tuple {1,2,a(3),a(4),a(5)}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Note that as 2 + 3 = 5 we now have the two prime sums required with the 5-tuple {1,2,3,a(4),a(5)}.
a(4) = 7 as a(4) = 4, 5 or 6 would lead to a contradiction: indeed, the quintuplets {1,2,3,4,a(5)}, {1,2,3,5,a(5)} and {1,2,3,6,a(5)} will produce more than the two required prime sums. With a(4) = 7 we have no contradiction as the 5-tuple {1,2,3,7,a(5)} has now exactly two prime sums: 1 + 2 = 3 and 2 + 3 = 5.
a(5) = 13 as a(5) = 4, 5, 6, 8, 9, 10, 11 or 12 would again lead to a contradiction (more than 2 prime sums with the 5-tuple); in combination with any other term before it, a(5) = 13 will produce only composite sums.
a(6) = 5 as 5 is the smallest available integer not leading to a contradiction: indeed, the 5-tuple {2,3,7,13,5} shows exactly the two prime sums we are looking for: 2 + 3 = 5 and 2 + 5 = 7.
And so on.
PROG
(PARI) A329413(n, show=0, o=1, N=2, M=4, p=[], U, u=o)={for(n=o, n-1, show&&print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p<M && sum(i=1, #p, isprime(p[i]+u))<=c, o=u)|| for(k=u, oo, bittest(U, k-u) || sum(i=1, #p, isprime(p[i]+k))!=c || [o=k, break])); o} \\ Optional args: show=1: print a(o..n-1); o=0: start with a(0) = 0 (A329453), N, M: produce N primes using M+1 consecutive terms. - M. F. Hasler, Nov 15 2019
CROSSREFS
Cf. A329333 (3 consecutive terms, exactly 1 prime sum). See also A329450, A329452 onwards.
Sequence in context: A361910 A068134 A249051 * A225093 A278007 A081256
KEYWORD
nonn
AUTHOR
STATUS
approved