OFFSET
0,7
COMMENTS
There are no repeated rows, as row n has sum n.
We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).
It appears that some numbers (such as 10) never appear in the sequence.
EXAMPLE
Triangle begins:
1: (1)
2: (1,1)
3: (1,1,1)
4: (3,1)
5: (4,1)
6: (1,4,1)
7: (2,4,1)
8: (1,2,4,1)
9: (1,1,2,4,1)
10: (3,2,4,1)
11: (1,3,2,4,1)
12: (1,1,3,2,4,1)
13: (3,3,2,4,1)
14: (9,4,1)
15: (1,9,4,1)
16: (2,9,4,1)
17: (16,1)
18: (1,16,1)
19: (1,1,16,1)
20: (3,16,1)
For example, the reversed first 13 terms of A000002 are (1221221211221), with Lyndon factorization (122)(122)(12)(1122)(1), so row 13 is (3,3,2,4,1).
MATHEMATICA
lynQ[q_]:=Array[Union[{q, RotateRight[q, #]}]=={q, RotateRight[q, #]}&, Length[q]-1, 1, And];
lynfac[q_]:=If[Length[q]==0, {}, Function[i, Prepend[lynfac[Drop[q, i]], Take[q, i]]][Last[Select[Range[Length[q]], lynQ[Take[q, #]]&]]]];
kolagrow[q_]:=If[Length[q]<2, Take[{1, 2}, Length[q]+1], Append[q, Switch[{q[[Length[Split[q]]]], q[[-2]], Last[q]}, {1, 1, 1}, 0, {1, 1, 2}, 1, {1, 2, 1}, 2, {1, 2, 2}, 0, {2, 1, 1}, 2, {2, 1, 2}, 2, {2, 2, 1}, 1, {2, 2, 2}, 1]]]
kol[n_Integer]:=Nest[kolagrow, {1}, n-1];
Table[Length/@lynfac[Reverse[kol[n]]], {n, 100}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 11 2019
STATUS
approved