login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329179
Numbers k such that A258881(k) is a square.
4
0, 23, 36, 52, 71, 80, 104, 137, 143, 154, 377, 443, 479, 533, 823, 963, 977, 1013, 1125, 1204, 1284, 1334, 1493, 1624, 1769, 1786, 1997, 2047, 2110, 2228, 2260, 2427, 2508, 2577, 2707, 2740, 3121, 3174, 3223, 3407, 3440, 3477, 3526, 3644, 3745, 3828, 3860, 4027, 4079, 4163, 4314, 4384, 4518
OFFSET
1,2
LINKS
EXAMPLE
a(3) = 36 is a member of the sequence because 36 + 3^2 + 6^2 = 81 = 9^2.
MAPLE
filter:= n -> issqr(n + convert(map(`^`, convert(n, base, 10), 2), `+`)):
select(filter, [$0..10^4]);
MATHEMATICA
Select[Range[0, 5000], IntegerQ[Sqrt[#+Total[IntegerDigits[#]^2]]]&] (* Harvey P. Dale, Jan 01 2022 *)
PROG
(Python)
from sympy.ntheory.primetest import is_square
def ssd(n): return sum(int(d)**2 for d in str(n))
def ok(n): return is_square(n + ssd(n))
def aupto(limit): return [m for m in range(limit+1) if ok(m)]
print(aupto(4000)) # Michael S. Branicky, Jan 30 2021
(PARI) isok(k) = issquare(k+norml2(digits(k))); \\ Michel Marcus, Jan 31 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Will Gosnell and Robert Israel, Nov 07 2019
STATUS
approved