login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A258881(k) is a square.
4

%I #23 Jan 01 2022 19:04:26

%S 0,23,36,52,71,80,104,137,143,154,377,443,479,533,823,963,977,1013,

%T 1125,1204,1284,1334,1493,1624,1769,1786,1997,2047,2110,2228,2260,

%U 2427,2508,2577,2707,2740,3121,3174,3223,3407,3440,3477,3526,3644,3745,3828,3860,4027,4079,4163,4314,4384,4518

%N Numbers k such that A258881(k) is a square.

%H Robert Israel, <a href="/A329179/b329179.txt">Table of n, a(n) for n = 1..10000</a>

%e a(3) = 36 is a member of the sequence because 36 + 3^2 + 6^2 = 81 = 9^2.

%p filter:= n -> issqr(n + convert(map(`^`,convert(n,base,10),2),`+`)):

%p select(filter, [$0..10^4]);

%t Select[Range[0,5000],IntegerQ[Sqrt[#+Total[IntegerDigits[#]^2]]]&] (* _Harvey P. Dale_, Jan 01 2022 *)

%o (Python)

%o from sympy.ntheory.primetest import is_square

%o def ssd(n): return sum(int(d)**2 for d in str(n))

%o def ok(n): return is_square(n + ssd(n))

%o def aupto(limit): return [m for m in range(limit+1) if ok(m)]

%o print(aupto(4000)) # _Michael S. Branicky_, Jan 30 2021

%o (PARI) isok(k) = issquare(k+norml2(digits(k))); \\ _Michel Marcus_, Jan 31 2021

%Y Cf. A010052, A258881, A329386.

%K base,nonn

%O 1,2

%A _Will Gosnell_ and _Robert Israel_, Nov 07 2019