login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329178
Sum of the products of pairs of Padovan numbers which are two apart, starting from A000931(5).
0
1, 3, 5, 11, 19, 34, 62, 107, 191, 335, 587, 1035, 1812, 3184, 5589, 9803, 17213, 30199, 52999, 93014, 163214, 286439, 502655, 882095, 1547991, 2716503, 4767160, 8365776, 14680889, 25763219, 45211237, 79340227, 139232411, 244335770, 428779502, 752455475
OFFSET
0,2
FORMULA
a(n) = Sum_{i=5..n+5} A000931(i)*A000931(i+2).
a(n) = A329227(n+7) - 1.
Conjectures from Colin Barker, Nov 09 2019: (Start)
G.f.: (1 + x - x^2 + x^3 - x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 + x - x^3)).
a(n) = 2*a(n-1) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + a(n-7) for n>6.
(End)
EXAMPLE
For n=3, a(3) = 1*1 + 1*2 + 1*2 + 2*3 = 11.
PROG
(Python)
p = lambda x:[1, 1, 1][x] if x<3 else p(x-2)+p(x-3)
a = lambda x:sum(p(i)*p(i+2) for i in range(x+1))
CROSSREFS
KEYWORD
nonn
AUTHOR
David Nacin, Nov 08 2019
STATUS
approved