login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134127
Largest prime in the partials sums of primes in A134125 which have integer averages.
5
3, 5, 11, 19, 31, 233, 739, 2207, 4871, 47933, 76103, 82723, 128663, 391273, 521041, 769423, 2036833, 3724997, 14722933, 31957817, 87574217, 167518933, 478372393, 656640899, 749613233, 861934273, 9083114473, 29862785453, 95892456511, 160534630967, 566082728429, 574273844491
OFFSET
1,1
COMMENTS
Add primes to cumulative totals 3 (to 2), 5, 7, 11, 13, 17, 19, etc. But 7, 13, 17 are omitted from the sequence because the sums at counts 3, 5, 6, e.g., do not produce integral quotients.
FORMULA
a(n) = A000040(1+A134126(n)). - R. J. Mathar, Jun 10 2008
EXAMPLE
At a(4), 11 is added to the previous sum 17: 17+11 = 28 and the index count is 4, so 28/4 = 7, which is integral, so 11 is added to the sequence.
PROG
(UBASIC) 10 'primes using counters 20 N=3:C=1:R=5:print 2; 3, 5 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then N=N+2:goto 30 60 A=A+2:O=A 70 if A<=sqrt(N) then 40 80 C=C+1 90 R=R+N:T=R/C:U=R-N 100 if T=int(T) then print C; U; N; R; T:stop 110 N=N+2:goto 30
(PARI) lista(pmax) = {my(k = 0, s = 2); forprime(p = 3, pmax, k++; s += p; if(!(s % k), print1(p, ", "))); } \\ Amiram Eldar, Apr 30 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Enoch Haga, Oct 09 2007
EXTENSIONS
Edited by R. J. Mathar, Jun 10 2008
More terms from Nathaniel Johnston, Apr 30 2011
a(29)-a(32) from Amiram Eldar, Apr 30 2024
STATUS
approved