login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329154
Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.
0
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
OFFSET
0,4
FORMULA
Let P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) and Q(n, x) = Sum_{k=0..n} P(n-k, k, x) then T(n, k) = [x^k] Q(n, x).
T(n, k) = (1/k!) * Pochhammer(n-k+1, k) * Sum_{j=0..n-k}((-1)^j*Sum_{m=0..n-k-j} (Product_{i=1..n-k-m-j} ((2^(i+m)-1)/(2^i-1))) * binomial(n-k, j)). - Detlef Meya, Oct 07 2023
EXAMPLE
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [2, 2, 1]
[3] [6, 6, 3, 1]
[4] [26, 24, 12, 4, 1]
[5] [158, 130, 60, 20, 5, 1]
[6] [1330, 948, 390, 120, 30, 6, 1]
[7] [15414, 9310, 3318, 910, 210, 42, 7, 1]
[8] [245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
MAPLE
T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Oct 08 2023
MATHEMATICA
T[n_, k_]:= (Pochhammer[n-k+1, k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1), {i, 1, n-k-m-j}], {m, 0, n-k-j}]*Binomial[n-k, j], {j, 0, n-k}]); Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, Oct 07 2023 *)
PROG
(Sage)
R = PolynomialRing(QQ, 'x')
x = R.gen()
@cached_function
def P(n, k, x):
if k < 0 or n < 0: return R(0)
if k == 0: return R(1)
return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
print(flatten([row(n) for n in range(10)]))
CROSSREFS
Row sums: A006116, first column: A135922.
Sequence in context: A162979 A094587 A135878 * A121284 A225112 A108076
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved