login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329136 Number of integer partitions of n whose augmented differences are an aperiodic word. 7
1, 1, 1, 2, 4, 5, 10, 14, 19, 28, 40, 53, 75, 99, 131, 172, 226, 294, 380, 488, 617, 787, 996, 1250, 1565, 1953, 2425, 3003, 3705, 4559, 5589, 6836, 8329, 10132, 12292, 14871, 17950, 21629, 25988, 31169, 37306, 44569, 53139, 63247, 75133, 89111, 105515, 124737 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

A sequence is aperiodic if its cyclic rotations are all different.

LINKS

Table of n, a(n) for n=0..47.

FORMULA

a(n) + A329143(n) = A000041(n).

EXAMPLE

The a(1) = 1 through a(7) = 14 partitions:

  (1)  (2)  (3)    (4)      (5)        (6)          (7)

            (2,1)  (2,2)    (4,1)      (3,3)        (4,3)

                   (3,1)    (2,2,1)    (4,2)        (5,2)

                   (2,1,1)  (3,1,1)    (5,1)        (6,1)

                            (2,1,1,1)  (2,2,2)      (3,2,2)

                                       (3,2,1)      (3,3,1)

                                       (4,1,1)      (4,2,1)

                                       (2,2,1,1)    (5,1,1)

                                       (3,1,1,1)    (2,2,2,1)

                                       (2,1,1,1,1)  (3,2,1,1)

                                                    (4,1,1,1)

                                                    (2,2,1,1,1)

                                                    (3,1,1,1,1)

                                                    (2,1,1,1,1,1)

With augmented differences:

  (1)  (2)  (3)    (4)      (5)        (6)          (7)

            (2,1)  (1,2)    (4,1)      (1,3)        (2,3)

                   (3,1)    (1,2,1)    (3,2)        (4,2)

                   (2,1,1)  (3,1,1)    (5,1)        (6,1)

                            (2,1,1,1)  (1,1,2)      (1,3,1)

                                       (2,2,1)      (2,1,2)

                                       (4,1,1)      (3,2,1)

                                       (1,2,1,1)    (5,1,1)

                                       (3,1,1,1)    (1,1,2,1)

                                       (2,1,1,1,1)  (2,2,1,1)

                                                    (4,1,1,1)

                                                    (1,2,1,1,1)

                                                    (3,1,1,1,1)

                                                    (2,1,1,1,1,1)

MATHEMATICA

aperQ[q_]:=Array[RotateRight[q, #1]&, Length[q], 1, UnsameQ];

aug[y_]:=Table[If[i<Length[y], y[[i]]-y[[i+1]]+1, y[[i]]], {i, Length[y]}];

Table[Length[Select[IntegerPartitions[n], aperQ[aug[#]]&]], {n, 0, 30}]

CROSSREFS

The Heinz numbers of these partitions are given by A329133.

The periodic version is A329143.

The non-augmented version is A329137.

Aperiodic binary words are A027375.

Aperiodic compositions are A000740.

Numbers whose binary expansion is aperiodic are A328594.

Numbers whose differences of prime indices are aperiodic are A329135.

Numbers whose prime signature is aperiodic are A329139.

Cf. A152061, A325351, A325356, A329132, A329134, A329139, A329140.

Sequence in context: A154318 A008283 A002237 * A067935 A228893 A272622

Adjacent sequences:  A329133 A329134 A329135 * A329137 A329138 A329139

KEYWORD

nonn

AUTHOR

Gus Wiseman, Nov 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:01 EST 2021. Contains 349437 sequences. (Running on oeis4.)