login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008283
Read across rows of Euler-Bernoulli or Entringer triangle.
0
1, 2, 4, 5, 10, 14, 16, 32, 46, 56, 61, 122, 178, 224, 256, 272, 544, 800, 1024, 1202, 1324, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136, 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
OFFSET
3,2
LINKS
V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51. English version.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
EXAMPLE
This is a sub-triangle of A008282, starting in row 3 of A008282 and then proceeding as a regular triangle.
[ 3] 1
[ 4] 2, 4
[ 5] 5, 10, 14
[ 6] 16, 32, 46, 56
[ 7] 61, 122, 178, 224, 256
[ 8] 272, 544, 800, 1024, 1202, 1324
[ 9] 1385, 2770, 4094, 5296, 6320, 7120, 7664
[10] 7936, 15872, 23536, 30656, 36976, 42272, 46366, 49136
[11] 50521, 101042, 150178, 196544, 238816, 275792, 306448, 329984, 345856
MAPLE
T := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
T(n, k - 1) + T(n - 1, n - k) fi end:
seq(seq(T(n, k-2), k = 3..n), n = 3..11); # Peter Luschny, Feb 17 2021
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
T[n, k - 1] + T[n - 1, n - k]];
Table[Table[T[n, k - 2], {k, 3, n}], {n, 3, 11}] // Flatten (* after Peter Luschny *)
CROSSREFS
Cf. A008282.
Sequence in context: A218936 A264855 A154318 * A002237 A329136 A067935
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved