login
A329104
Numbers m such that sigma(m) - tau(m) = 2m.
1
56, 7192, 7232, 7912, 10792, 17272, 30592, 114256, 2154584, 3428368, 89245784
OFFSET
1,1
COMMENTS
Abundant numbers m with abundance A(m) = tau(m).
Corresponding values of A(m) = tau(m): 8, 16, 14, 16, 16, 16, 16, 20, 32, 30, 32, ...
a(12) > 10^13, if it exists. - Giovanni Resta, Nov 07 2019
EXAMPLE
Number 56 is in the sequence because sigma(56) - tau(56) = 2*56; 120 - 8 = 112.
MATHEMATICA
Select[Range[4*10^6], DivisorSigma[1, #] - DivisorSigma[0, #] == 2 # &] (* Amiram Eldar, Nov 04 2019 *)
PROG
(Magma) [m: m in [1..10^5] | SumOfDivisors(m) - NumberOfDivisors(m) eq 2*m];
(PARI) isok(m) = my(f=factor(m)); sigma(f) - numdiv(f) == 2*m; \\ Michel Marcus, Nov 05 2019
CROSSREFS
Cf. A083874 (deficient numbers m with deficiency D(m) = tau(m)).
Sequence in context: A180372 A255960 A201240 * A233428 A183614 A082167
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 04 2019
EXTENSIONS
a(11) from Amiram Eldar, Nov 04 2019
STATUS
approved