login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233428
Number of tilings of a 3 X 5n rectangle with 3n pentominoes of any shape.
2
1, 56, 7670, 1082911, 153054306, 21632866165, 3057616805283, 432167457281031, 61083099363540480, 8633563135788393662, 1220278820098831948033, 172475764103555415010594, 24377944378888377125376221, 3445609736701113995818305965, 487006872816193035818432289071
OFFSET
0,2
LINKS
Wikipedia, Pentomino
FORMULA
From Vaclav Kotesovec, Mar 05 2016: (Start)
a(n) ~ c * d^n, where d = 141.34127484863151940788399760068559708960763498273966116022774034..., c = 0.3835032349236650628846889495224683008372791393401511291113817887...
a(n) = 172*a(n-1) - 4716*a(n-2) + 56595*a(n-3) - 364164*a(n-4) + 1353076*a(n-5) - 3014276*a(n-6) + 4180766*a(n-7) - 3711813*a(n-8) + 2129818*a(n-9) - 781787*a(n-10) + 178168*a(n-11) - 24000*a(n-12) + 1780*a(n-13) - 67*a(n-14) + a(n-15).
G.f.: (-1 + 116*x - 2754*x^2 + 28828*x^3 - 160178*x^4 + 509733*x^5 - 963854*x^6 + 1114401*x^7 - 801386*x^8 + 358357*x^9 - 97595*x^10 + 15483*x^11 - 1335*x^12 + 58*x^13 - x^14)/( - 1 + 172*x - 4716*x^2 + 56595*x^3 - 364164*x^4 + 1353076*x^5 - 3014276*x^6 + 4180766*x^7 - 3711813*x^8 + 2129818*x^9 - 781787*x^10 + 178168*x^11 - 24000*x^12 + 1780*x^13 - 67*x^14 + x^15).
(End)
CROSSREFS
Quintisection of column k=3 of A233427.
Sequence in context: A255960 A201240 A329104 * A183614 A082167 A006690
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 09 2013
STATUS
approved