login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328875
Constant term in the expansion of (-1 + (1 + w + 1/w) * (1 + x + 1/x) * (1 + y + 1/y) * (1 + z + 1/z))^n.
5
1, 0, 80, 2160, 121200, 6136800, 356570960, 21225304800, 1321586558320, 84398804078400, 5518934916677280, 367489108030524480, 24852668879410144080, 1702677155195779963200, 117960677109321028039200, 8251450286371615261498560, 582087494621171173360817520
OFFSET
0,3
COMMENTS
Also number of n-step closed walks (from origin to origin) in 4-dimensional lattice, using steps (t_1,t_2,t_3,t_4) (t_k = -1, 1 or 0 for 1 <= k <= 4) except for (0,0,0,0).
For fixed m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m ~ (3^m - 1)^(n + m/2) / (2^m * 3^(m*(m-1)/2) * Pi^(m/2) * n^(m/2)). - Vaclav Kotesovec, Oct 30 2019
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^4.
a(n) ~ 5 * 80^(n+1) / (729 * Pi^2 * n^2). - Vaclav Kotesovec, Oct 30 2019
MATHEMATICA
Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^4)}
CROSSREFS
Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m: A126869 (m=1), A094061 (m=2), A328874 (m=3), this sequence (m=4).
Cf. A326920.
Sequence in context: A333546 A132466 A277764 * A154307 A233950 A324071
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2019
STATUS
approved