login
A328525
Numbers k such that (k-1)*k*(k+1) = (k-1)*(1+u) = k*(1+v) = (k+1)*(1+w) with primes u, v, w.
1
3, 5, 9, 21, 55, 131, 145, 155, 231, 259, 265, 449, 495, 561, 595, 1045, 1051, 1365, 1409, 1491, 1549, 1849, 1989, 2001, 2101, 2469, 2785, 3365, 3621, 3641, 3669, 3845, 3911, 4285, 4951, 5181, 5465, 6049, 6699, 7189, 7229, 8219, 8629, 9175, 9521, 9539, 9631, 9729
OFFSET
1,1
LINKS
EXAMPLE
3 is a term because 2*3*4 = 2*(1+11) = 3*(1+7) = 4*(1+5) with primes 11, 7, 5.
9 is a term because 8*9*10 = 8*(1+89) = 9*(1+79) = 10*(1+71) with primes 89, 79, 71.
MAPLE
q:= k-> andmap(isprime, (t-> [t-1, t-k, t+k])(k^2-1)):
select(q, [$1..10000])[]; # Alois P. Heinz, Feb 25 2020
MATHEMATICA
Select[Range[2, 10^4], AllTrue[{(# - 1)*#, #*(# + 1), (# + 1)*(# - 1)} - 1, PrimeQ] &] (* Amiram Eldar, Feb 24 2020 *)
PROG
(Rexx)
S = 3
do N = 5 to 595 by 2
if NOPRIME( N*N +N -1 ) then iterate N
if NOPRIME( N*N -2 ) then iterate N
if NOPRIME( N*N -N -1 ) then iterate N
S = S || ', ' N
end N
say S
(PARI) isok(k) = isprime(k*(k+1)-1) && isprime((k+1)*(k-1)-1) && isprime(k*(k-1)-1); \\ Michel Marcus, Feb 25 2020
CROSSREFS
Cf. A000040.
Intersection of A002328, A028870 and A045546.
Sequence in context: A136401 A147758 A129787 * A125517 A147038 A146275
KEYWORD
nonn
AUTHOR
Frank Ellermann, Feb 24 2020
EXTENSIONS
More terms from Amiram Eldar, Feb 24 2020
STATUS
approved