login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136401
a(n) = 3*a(n-1) - 4*a(n-2) + 6*a(n-3) - 4*a(n-4).
1
0, 0, 0, 1, 3, 5, 9, 21, 45, 85, 165, 341, 693, 1365, 2709, 5461, 10965, 21845, 43605, 87381, 174933, 349525, 698709, 1398101, 2796885, 5592405, 11183445, 22369621, 44741973, 89478485, 178951509, 357913941, 715838805, 1431655765, 2863289685, 5726623061
OFFSET
0,5
FORMULA
a(n+3) = Sum_{k=0..n} A154957(n,k)*2^k. - Philippe Deléham, Mar 21 2014
G.f.: x^3/((x-1)*(2*x-1)*(2*x^2+1)). - Philippe Deléham, Mar 21 2014
EXAMPLE
Binary.................Decimal
0............................0
0............................0
0............................0
1............................1
11...........................3
101..........................5
1001.........................9
10101.......................21
101101......................45
1010101.....................85
10100101...................165
101010101..................341
1010110101.................693
10101010101...............1365
101010010101..............2709
1010101010101.............5461
10101011010101...........10965
101010101010101..........21845
1010101001010101.........43605, etc. - Philippe Deléham, Mar 21 2014
MATHEMATICA
CoefficientList[Series[x^3/((x - 1) (2 x - 1) (2 x^2 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 22 2014 *)
LinearRecurrence[{3, -4, 6, -4}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Mar 13 2018 *)
CROSSREFS
Cf. A154957.
Sequence in context: A050355 A147039 A069927 * A147758 A129787 A328525
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 30 2008
EXTENSIONS
More terms from Philippe Deléham, Mar 21 2014
STATUS
approved