login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328373
Expansion of Sum_{k>=1} x^(k^2) * (1 + x^(2*k^2)) / (1 - x^(2*k^2))^2.
2
1, 0, 3, 1, 5, 0, 7, 0, 10, 0, 11, 3, 13, 0, 15, 1, 17, 0, 19, 5, 21, 0, 23, 0, 26, 0, 30, 7, 29, 0, 31, 0, 33, 0, 35, 10, 37, 0, 39, 0, 41, 0, 43, 11, 50, 0, 47, 3, 50, 0, 51, 13, 53, 0, 55, 0, 57, 0, 59, 15, 61, 0, 70, 1, 65, 0, 67, 17, 69, 0, 71, 0, 73, 0, 78, 19, 77, 0, 79, 5, 91
OFFSET
1,3
COMMENTS
Sum of odd divisors d of n such that n/d is square.
LINKS
FORMULA
G.f.: Sum_{k>=1} (2*k - 1) * (theta_3(x^(2*k - 1)) - 1) / 2.
G.f.: Sum_{i>=1} Sum_{j>=1} phi(i) * x^(i*j^2) / (1 + x^(i*j^2)).
Dirichlet g.f.: (1 - 2^(1 - s)) * zeta(s-1) * zeta(2*s).
a(n) = Sum_{d|n} A193356(d) * A010052(n/d).
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 360. - Vaclav Kotesovec, Oct 14 2019
Multiplicative with a(2^e) = 0 if e is odd, and 1 if e is even, and for p > 2, a(p^e) = (p^(e + 2) - p)/(p^2 - 1) if e is odd, and (p^(e + 2) - 1)/(p^2 - 1) if e is even. - Amiram Eldar, Oct 16 2020
MATHEMATICA
nmax = 81; CoefficientList[Series[Sum[x^(k^2) (1 + x^(2 k^2))/(1 - x^(2 k^2))^2, {k, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, # &, OddQ[#] && IntegerQ[(n/#)^(1/2)] &], {n, 1, 81}]
f[p_, e_] := If[p == 2, Boole @ EvenQ[e], If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), (p^(e + 2) - p)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 16 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, if ((d%2) && issquare(n/d), d)); \\ Michel Marcus, Oct 14 2019
(Magma) a:=[]; for n in [1..81] do v:=[d:d in Divisors(n)| IsOdd(d) and IsSquare(n div d)]; if #v ne 0 then Append(~a, &+v); else Append(~a, 0); end if; end for; a; // Marius A. Burtea, Oct 14 2019
CROSSREFS
Cf. A000593, A010052, A035316, A036554 (positions of 0's), A056911 (fixed points), A076752, A193356, A328372.
Sequence in context: A120444 A378597 A094919 * A316631 A197152 A337668
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Oct 14 2019
STATUS
approved