login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328372
Expansion of Sum_{k>=1} x^(k^2) / (1 - x^(2*k^2)).
2
1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1
OFFSET
1,9
COMMENTS
Number of odd divisors d of n such that n/d is square.
Inverse Moebius transform of A143259.
LINKS
FORMULA
G.f.: Sum_{k>=1} (theta_3(x^(2*k - 1)) - 1) / 2.
Dirichlet g.f.: (1 - 1/2^s) * zeta(s) * zeta(2*s).
a(n) = Sum_{d|n} A000035(d) * A010052(n/d).
Sum_{k=1..n} a(k) ~ Pi^2 * n / 12 + (sqrt(2)-1) * zeta(1/2) * sqrt(n/2). - Vaclav Kotesovec, Oct 14 2019
Multiplicative with a(2^e) = 0 if e is odd, and 1 if e is even, and for p > 2, a(p^e) = ceiling((e+1)/2). - Amiram Eldar, Oct 16 2020
MATHEMATICA
nmax = 91; CoefficientList[Series[Sum[x^(k^2)/(1 - x^(2 k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, 1 &, OddQ[#] && IntegerQ[(n/#)^(1/2)] &], {n, 1, 91}]
Table[DivisorSum[n, (-1)^PrimeOmega[#] Mod[DivisorSigma[1, #], 2] &], {n, 1, 91}]
f[p_, e_] := If[p == 2, Boole @ EvenQ[e], Ceiling[(e + 1)/2]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 16 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2) && issquare(n/d)); \\ Michel Marcus, Oct 14 2019
(Magma) [#[d:d in Divisors(n)| IsOdd(d) and IsSquare(n div d)]:n in [1..90]]; // Marius A. Burtea, Oct 14 2019
CROSSREFS
Cf. A000035, A001227, A010052, A036554 (positions of 0's), A046951, A143259, A328373.
Sequence in context: A359823 A373336 A074272 * A341022 A340454 A342682
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Oct 14 2019
STATUS
approved