login
A327991
The complementary Fibonacci codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).
0
1, 2, 2, 6, 2, 6, 30, 2, 6, 30, 10, 210, 2, 6, 30, 10, 210, 42, 70, 2310, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510
OFFSET
0,2
COMMENTS
The complementary Fibonacci codes are binary strings enumerated in an irregular triangle CF(n, k). The first few are shown below in the Example section. The complementary Fibonacci codes are the bitwise complements of the Fibonacci codes described in A327990, in ascending order.
The complementary Fibonacci codes are represented here through
T(n, k) = Product_{j=0..m} p(j)^c(j),
where p(j) is the j-th prime number, c = CF(n, k) and m = length(CF(n, k)).
EXAMPLE
The complementary Fibonacci codes start:
[0] [[]]
[1] [[1]]
[2] [[1][11]]
[3] [[1][11][111]]
[4] [[1][11][111][101][1111]]
[5] [[1][11][111][101][1111][1101][1011][11111]]
[6] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111]]
[7] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111] [11001][10101][111101][10011][111011][110111][101111][1111111]]
The representation of the complementary Fibonacci codes starts:
[0] [1]
[1] [2]
[2] [2, 6]
[3] [2, 6, 30]
[4] [2, 6, 30, 10, 210]
[5] [2, 6, 30, 10, 210, 42, 70, 2310]
[6] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030]
[7] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510]
PROG
(SageMath)
@cached_function
def FibonacciCodes(n):
if n == 0 : return [[]]
if n == 1 : return [[1]]
A = [c.conjugate() for c in Compositions(n) if not(1 in c)]
return FibonacciCodes(n-1) + [[2-i for i in a] for a in A]
def A327991row(n):
P = Primes()
M = lambda C: mul(P[i]^c for (i, c) in enumerate(C))
return [M(c) for c in FibonacciCodes(n)]
for n in (0..7): print(A327991row(n))
CROSSREFS
The diagonal is A002110 (primorial numbers).
Sequence in context: A068555 A167556 A221438 * A193322 A165460 A242649
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Oct 09 2019
STATUS
approved