login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327991 The complementary Fibonacci codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1). 0
1, 2, 2, 6, 2, 6, 30, 2, 6, 30, 10, 210, 2, 6, 30, 10, 210, 42, 70, 2310, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The complementary Fibonacci codes are binary strings enumerated in an irregular triangle CF(n, k). The first few are shown below in the Example section. The complementary Fibonacci codes are the bitwise complements of the Fibonacci codes described in A327990, in ascending order.

The complementary Fibonacci codes are represented here through

    T(n, k) = Product_{j=0..m} p(j)^c(j),

where p(j) is the j-th prime number, c = CF(n, k) and m = length(CF(n, k)).

LINKS

Table of n, a(n) for n=0..53.

EXAMPLE

The complementary Fibonacci codes start:

[0] [[]]

[1] [[1]]

[2] [[1][11]]

[3] [[1][11][111]]

[4] [[1][11][111][101][1111]]

[5] [[1][11][111][101][1111][1101][1011][11111]]

[6] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111]]

[7] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111] [11001][10101][111101][10011][111011][110111][101111][1111111]]

The representation of the complementary Fibonacci codes starts:

[0] [1]

[1] [2]

[2] [2, 6]

[3] [2, 6, 30]

[4] [2, 6, 30, 10, 210]

[5] [2, 6, 30, 10, 210, 42, 70, 2310]

[6] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030]

[7] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510]

PROG

(SageMath)

@cached_function

def FibonacciCodes(n):

    if n == 0 : return [[]]

    if n == 1 : return [[1]]

    A = [c.conjugate() for c in Compositions(n) if not(1 in c)]

    return FibonacciCodes(n-1) + [[2-i for i in a] for a in A]

def A327991row(n):

    P = Primes()

    M = lambda C: mul(P[i]^c for (i, c) in enumerate(C))

    return [M(c) for c in FibonacciCodes(n)]

for n in (0..7): print(A327991row(n))

CROSSREFS

The diagonal is A002110 (primorial numbers).

Cf. A309896, A327990, A000045, A001924.

Sequence in context: A068555 A167556 A221438 * A193322 A165460 A242649

Adjacent sequences:  A327988 A327989 A327990 * A327992 A327993 A327994

KEYWORD

nonn,tabf

AUTHOR

Peter Luschny, Oct 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 06:27 EDT 2020. Contains 336290 sequences. (Running on oeis4.)