OFFSET
0,2
COMMENTS
REFERENCES
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2. See page 392.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x)^8 - 256 * x / chi(x)^16 in powers of x where chi() is a Ramanujan theta function.
Expansion of (phi(x)^8 - (2 * phi(x) * phi(-x))^4 + 16 * phi(-x)^8) / f(x)^8 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/3) * (eta(q)^2 / (eta(q) * eta(q^4)))^8 + 256 * (eta(q) * eta(q^4) / eta(q^2))^16 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A007245(n).
EXAMPLE
G.f. = 1 - 248*x + 4124*x^2 - 34752*x^3 + 213126*x^4 - 1057504*x^5 + ...
G.f. = q^-1 - 248*q^2 + 4124*q^5 - 34752*q^8 + 213126*q^11 - 1057504*q^14 + ...
If J_n := (-j(1/2 + sqrt(-n)/2))^(1/3) / 32, then J_3 = 0, J_11 = 1, J_19 = 3, J_43 = 30, J_67 = 165, J_163 = 20010.
MATHEMATICA
a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ[q]}, (1 - 16 m (1 - m)) / (4 m (1 - m))^(1/3)] 4 (-q)^(1/3), {q, 0, n}] // Simplify;
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (-x * ellj( -x + x^2 * O(x^n)))^(1/3), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 30 2019
STATUS
approved