login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-j(1/2 + t))^(1/3) * q^(1/3) in powers of q = exp(2 Pi i t) where j is the modular j-function.
0

%I #10 Apr 16 2022 16:49:43

%S 1,-248,4124,-34752,213126,-1057504,4530744,-17333248,60655377,

%T -197230000,603096260,-1749556736,4848776870,-12908659008,33161242504,

%U -82505707520,199429765972,-469556091240,1079330385764,-2426800117504,5346409013164,-11558035326944

%N Expansion of (-j(1/2 + t))^(1/3) * q^(1/3) in powers of q = exp(2 Pi i t) where j is the modular j-function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Given g.f. A(x), then B(q) = A(q^3) / q satisfies J_n = B(sqrt(-n)/2)/32 where a few values of J_n as given in Ramanujan, Notebooks, Vol. 2, page 392.

%D S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2. See page 392.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of chi(x)^8 - 256 * x / chi(x)^16 in powers of x where chi() is a Ramanujan theta function.

%F Expansion of (phi(x)^8 - (2 * phi(x) * phi(-x))^4 + 16 * phi(-x)^8) / f(x)^8 in powers of x where phi(), f() are Ramanujan theta functions.

%F Expansion of q^(1/3) * (eta(q)^2 / (eta(q) * eta(q^4)))^8 + 256 * (eta(q) * eta(q^4) / eta(q^2))^16 in powers of q.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t).

%F a(n) = (-1)^n * A007245(n).

%e G.f. = 1 - 248*x + 4124*x^2 - 34752*x^3 + 213126*x^4 - 1057504*x^5 + ...

%e G.f. = q^-1 - 248*q^2 + 4124*q^5 - 34752*q^8 + 213126*q^11 - 1057504*q^14 + ...

%e If J_n := (-j(1/2 + sqrt(-n)/2))^(1/3) / 32, then J_3 = 0, J_11 = 1, J_19 = 3, J_43 = 30, J_67 = 165, J_163 = 20010.

%t a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ[q]}, (1 - 16 m (1 - m)) / (4 m (1 - m))^(1/3)] 4 (-q)^(1/3), {q, 0, n}] // Simplify;

%o (PARI) {a(n) = if( n<0, 0, polcoeff( (-x * ellj( -x + x^2 * O(x^n)))^(1/3), n))};

%Y Cf. A007245.

%K sign

%O 0,2

%A _Michael Somos_, Sep 30 2019