login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327795
Number of parts in all proper twice partitions of n into distinct parts.
3
0, 0, 0, 3, 6, 13, 30, 61, 121, 210, 353, 600, 989, 1628, 2667, 4205, 6514, 10406, 15893, 24322, 37516, 56824, 85102, 128420, 191579, 284898, 422839, 622721, 913006, 1345320, 1958269, 2843788, 4140170, 5983662, 8632808, 12433730, 17830728, 25527909, 36516161
OFFSET
1,4
LINKS
EXAMPLE
a(4) = 3:
4 -> 31 -> 211 (3 parts)
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2<n, 0, b(n, i-1, k)+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=1..41);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 2];
Array[a, 41] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A327632.
Cf. A327605.
Sequence in context: A005313 A213674 A108639 * A087218 A098075 A137584
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 25 2019
STATUS
approved