login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098075
Threefold convolution of A004148 (the RNA secondary structure numbers) with itself.
1
1, 3, 6, 13, 30, 69, 160, 375, 885, 2102, 5022, 12060, 29095, 70485, 171399, 418220, 1023663, 2512761, 6184253, 15257262, 37725972, 93477778, 232069116, 577179078, 1437926977, 3587977293, 8966170056, 22437282917, 56221762626, 141051397725
OFFSET
0,2
LINKS
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86.
FORMULA
a(n) = 3*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+2, 3+n-k)/k, n >= 1, a(0)=1.
G.f.: f^3, where f = (1 - z + z^2 - sqrt(1 - 2*z - z^2 - 2*z^3 + z^4))/(2z^2) is the g.f. of A004148.
a(n) ~ 3 * 5^(1/4) * phi^(2*n+6) / (2 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence n^2*(n+6)*a(n) -n*(2*n+5)*(n+2)*a(n-1) -(n+1)*(n^2+2*n-16)*a(n-2) -n*(n+2)*(2*n-1)*a(n-3) +(n-4)*(n+2)^2*a(n-4)=0. - R. J. Mathar, Jul 24 2022
MAPLE
a:=proc(n) if n=0 then 1 else 3*sum(binomial(k, n-k)*binomial(k+2, 3+n-k)/k, k=ceil((n+1)/2)..n) fi end: seq(a(n), n=0..30);
CROSSREFS
Cf. A004148.
Sequence in context: A108639 A327795 A087218 * A137584 A201631 A125267
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 13 2004
STATUS
approved