login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of parts in all proper twice partitions of n into distinct parts.
3

%I #14 Dec 09 2020 15:15:02

%S 0,0,0,3,6,13,30,61,121,210,353,600,989,1628,2667,4205,6514,10406,

%T 15893,24322,37516,56824,85102,128420,191579,284898,422839,622721,

%U 913006,1345320,1958269,2843788,4140170,5983662,8632808,12433730,17830728,25527909,36516161

%N Number of parts in all proper twice partitions of n into distinct parts.

%H Alois P. Heinz, <a href="/A327795/b327795.txt">Table of n, a(n) for n = 1..5000</a>

%e a(4) = 3:

%e 4 -> 31 -> 211 (3 parts)

%p b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],

%p `if`(k=0, [1, 1], `if`(i*(i+1)/2<n, 0, b(n, i-1, k)+

%p (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*

%p b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))

%p end:

%p a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):

%p seq(a(n), n=1..41);

%t b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];

%t T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];

%t a[n_] := T[n, 2];

%t Array[a, 41] (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *)

%Y Column k=2 of A327632.

%Y Cf. A327605.

%K nonn

%O 1,4

%A _Alois P. Heinz_, Sep 25 2019