login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327288
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size five are used and the colors are introduced in increasing order.
2
1, 2, 5, 10, 20, 36, 73, 125, 222, 372, 623, 1002, 1611, 2559, 3984, 6139, 9355, 14096, 21028, 31093, 45523, 66403, 95779, 137495, 195813, 277531, 390428, 546942, 761113, 1054749, 1454412, 1996271, 2727247, 3711683, 5029288, 6789347, 9130315, 12234596, 16335987
OFFSET
15,2
LINKS
FORMULA
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-4))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-4)) / (4*5!*sqrt(15)*Pi*n). - Vaclav Kotesovec, Sep 18 2019
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(5):
seq(a(n), n=15..53);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[15, 53] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A321878.
Sequence in context: A327290 A227356 A327289 * A102688 A236559 A275388
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2019
STATUS
approved