login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327286
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size three are used and the colors are introduced in increasing order.
2
1, 2, 5, 10, 21, 37, 67, 112, 187, 302, 479, 741, 1136, 1707, 2539, 3732, 5424, 7804, 11133, 15743, 22088, 30774, 42582, 58540, 80007, 108725, 146955, 197646, 264525, 352433, 467541, 617651, 812734, 1065417, 1391592, 1811296, 2349775, 3038515, 3917052, 5034647
OFFSET
6,2
LINKS
FORMULA
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-2))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-2)) / (72*Pi*n). - Vaclav Kotesovec, Sep 18 2019
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(3):
seq(a(n), n=6..47);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 3}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[6, 47] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A321878.
Sequence in context: A262408 A344378 A032468 * A215925 A359209 A182807
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2019
STATUS
approved