login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size five are used and the colors are introduced in increasing order.
2

%I #10 Dec 14 2020 09:10:32

%S 1,2,5,10,20,36,73,125,222,372,623,1002,1611,2559,3984,6139,9355,

%T 14096,21028,31093,45523,66403,95779,137495,195813,277531,390428,

%U 546942,761113,1054749,1454412,1996271,2727247,3711683,5029288,6789347,9130315,12234596,16335987

%N Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size five are used and the colors are introduced in increasing order.

%H Alois P. Heinz, <a href="/A327288/b327288.txt">Table of n, a(n) for n = 15..5000</a>

%F a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-4))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-4)) / (4*5!*sqrt(15)*Pi*n). - _Vaclav Kotesovec_, Sep 18 2019

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

%p (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))

%p end:

%p a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(5):

%p seq(a(n), n=15..53);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];

%t a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];

%t a /@ Range[15, 53] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)

%Y Column k=5 of A321878.

%K nonn

%O 15,2

%A _Alois P. Heinz_, Aug 28 2019