The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326952 a(n) = A001222(A028905(n)). 2
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 7, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS Multiplicity of prime divisors of n, where n is a number composed of the sorted digits of a prime number. Conjecture: the sum of the first n terms of A326952 (smallest to largest sorting) is <= the sum of the first n terms of A326953 (largest to smallest sorting). This is true for the first 9592 terms. LINKS Joshua Michael McAteer, Table of n, a(n) for n = 1..9592 EXAMPLE The 13th prime number is 41. Sorting the digits gives 14. 14 has 2 factors, 2 and 7. The 13th term of this sequence is 2. PROG (MATLAB) nmax= 100; p = primes(nmax); lp = length(p); sfac = zeros(1, lp); for i = 1:lp digp=str2double(regexp(num2str(p(i)), '\d', 'match')); sdigp = sort(digp); l=length(digp); conv = 10.^flip(0:(l-1)); snum = sum(conv.*sdigp); sfac(i) = numel(factor(snum)); end CROSSREFS Cf. A001222 (bigomega), A028905, A326953 (for reverse sorting). Sequence in context: A187201 A262403 A343491 * A109909 A254573 A144387 Adjacent sequences:  A326949 A326950 A326951 * A326953 A326954 A326955 KEYWORD nonn,base AUTHOR Joshua Michael McAteer, Aug 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 19:33 EDT 2021. Contains 346335 sequences. (Running on oeis4.)