login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326417
Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s)).
1
1, 3, 4, 6, 4, 12, 4, 10, 10, 12, 4, 24, 4, 12, 16, 15, 4, 30, 4, 24, 16, 12, 4, 40, 10, 12, 20, 24, 4, 48, 4, 21, 16, 12, 16, 60, 4, 12, 16, 40, 4, 48, 4, 24, 40, 12, 4, 60, 10, 30, 16, 24, 4, 60, 16, 40, 16, 12, 4, 96, 4, 12, 40, 28, 16, 48, 4, 24, 16, 48, 4, 100, 4, 12, 40
OFFSET
1,2
COMMENTS
Inverse Moebius transform applied twice to A001227.
LINKS
FORMULA
G.f.: Sum_{k>=1} tau_3(k) * x^k / (1 - x^(2*k)), where tau_3 = A007425.
a(n) = tau_4(n) if n odd, tau_4(n) - tau_4(n/2) if n even, where tau_4 = A007426.
a(n) = Sum_{d|n, n/d odd} tau_3(d).
a(n) = Sum_{d|n} A000005(n/d) * A001227(d).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A280486.
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (e+1)*(e+2)*(e+3)/6 for odd primes p. - Amiram Eldar, Dec 02 2020
MATHEMATICA
Table[Sum[DivisorSigma[0, n/d] Total[Mod[Divisors[d], 2]], {d, Divisors[n]}], {n, 1, 75}]
nmax = 75; A007425 = Table[DivisorSum[n, DivisorSigma[0, #] &], {n, 1, nmax}]; Table[DivisorSum[n, A007425[[#]] &, OddQ[n/#] &], {n, 1, nmax}]
f[2, e_] := (e + 1)*(e + 2)/2; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 18 2019
STATUS
approved