|
|
A280486
|
|
G.f.: Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l)).
|
|
8
|
|
|
1, 1, 4, 8, 20, 36, 86, 150, 314, 564, 1088, 1902, 3557, 6085, 10902, 18506, 32124, 53584, 91133, 149749, 249315, 405121, 662582, 1063152, 1714580, 2719842, 4327302, 6797316, 10686005, 16622003, 25861855, 39866017, 61422891, 93910783, 143406552, 217537696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, arXiv:2303.02240 [math.CO], 2023.
|
|
FORMULA
|
G.f.: Product_{k>=1} (1 + x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[tau4[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Sep 08 2018 *)
|
|
CROSSREFS
|
Cf. A000009, A007426, A107742, A280473, A280487, A219561.
Sequence in context: A053303 A097164 A133628 * A097940 A032280 A300158
Adjacent sequences: A280483 A280484 A280485 * A280487 A280488 A280489
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Jan 04 2017
|
|
STATUS
|
approved
|
|
|
|